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Abstract. A hydrodynamic approach based on concentration, velocity and energy conservation equations
is developed and used for the simulation of the electron transport in bulk HgCdTe. Both transient and
steady-state regimes are simulated using input parameters calculated with a Monte Carlo simulator. The
model is validated through a comparison in excellent agreement with Monte Carlo results.

PACS. 67.55.Hc Transport properties – 73.61.Ey III-V semiconductors – 02.70.Uu Applications of Monte
Carlo methods

1 Introduction

The first numerical approaches to carrier transport in
semiconductors were based on the combination of a drift
component due to the applied electric field and a diffusion
component due to the concentration gradients [1]: the so-
called drift-diffusion approach. However, in the presence
of high electric fields, short distances between contacts
or short time scales, the drift-diffusion approach loses its
validity due to the appearance of hot-carrier and non-
local transport effects [2]. In fact, besides carrier density
and velocity, also the energy needs to be included in the
model since it can differ significantly from the thermal
equilibrium value [3,4]: the hydrodynamic (HD) approach,
which combines the simplicity of the drift-diffusion model
with the possibility of accounting for non-equilibrium ef-
fects, has emerged as a very reliable technique. In gen-
eral, the HD description is based on the solution of a
system of coupled differential equations for carrier concen-
tration, velocity and energy conservation equations which
are derived from the Boltzmann kinetic equation [5]. How-
ever, such a derivation implies the introduction of several
assumptions to close the system of conservation equa-
tions and, as a consequence, there exists a certain de-
gree of freedom in the choice of the parameters to be
used. On the other hand, the HD approach allows the ex-
traction of important electron parameters by considering
in the same framework physical mechanisms of different
time scales: for instance, scattering processes and elec-
tron generation-recombination phenomena. Among semi-
conductor materials for which the knowledge of these pa-
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rameters is fundamental to optimize device performances,
we are interested in n-type mercury-cadmium-telluride
(HgCdTe) which is a widely used alloy for infrared opto-
electronics applications and for which most of these quan-
tities are not well known. The majority of HgCdTe-based
devices contain a cadmium fraction x = 0.2 which allows,
at 77 K, detection in the 8–14 µm spectral region. The
consequence of this alloy proportion is a narrow semicon-
ductor band-gap of about 0.1 eV: in particular, degener-
acy and impact ionization processes are activated from
low electric fields of the order of 100 V/cm [6].

The paper is organized as follows: Section 2 reports
the general theory underlying the present HD approach.
The results of simulations are presented in Section 3 and
the main conclusions are given in Section 4.

2 Hydrodynamic model

For a one-dimensional geometry, the HD modeling of elec-
tron transport in semiconductors proposed consists in the
following system of conservation equations [5,7]:
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where ν is the electron mean velocity, ε the average en-
ergy, ε0 the thermal equilibrium energy, E the electric
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field, q the electron charge, and where τν and τε represent
the velocity and energy relaxation times, respectively. In
the case of a bulk homogeneous material the unknowns
do not depend on space and then spatial derivations can
be neglected. Moreover, the electric field E is a constant.
Therefore the balance equations reduce to the following
form:

∂n

∂t
= 0 (4)

∂ν

∂t
+ m∗−1qE = − ν

τν
(5)

∂ε

∂t
+ qEε = −ε − ε0

τε
· (6)

This system of equations contains three unknowns which
are the electron density n, the mean velocity ν and en-
ergy ε. Moreover, it contains three input parameters: the
inverse effective mass m∗−1, the velocity and energy relax-
ation times τν and τε, respectively. We remark that the pa-
rameters of equations (4)–(6) are, by definition, functions
of the mean energy [5,7].

The relaxation times are calculated using the standard
balance expressions [7]. The velocity relaxation time is
given by:

τν =
ν

qEm∗−1
(7)

and the energy relaxation time by:

τε =
ε − ε0

qEν
· (8)

In this case we calculate τν and τε using the electron drift
velocity and mean energy calculated with a Monte Carlo
simulator of the homogeneous material under stationary
conditions. For an easier implementation of the energy de-
pendence of the relaxation times in a HD simulator these
quantities can be described using the following analytical
interpolation formula [8,9]:

ν = νs
E/Ec

[1 + (E/Ec)]
(9)

for the average velocity and:

ε = ε0

[
1 +

(
E

Ec

)β
]γ

(10)

for the average energy. The quantities νs and Ec represent
the saturation velocity and the critical field, respectively,
while β and γ are adjustable parameters.

As concerns the effective mass, we have used the fol-
lowing interpolation formula:

m∗(E) = aE2 + bE + c (11)

where a, b and c are adjustable parameters. Finally, we
remark that in the HD simulator the dependence of the
parameters on the energy is deduced through the electric
field dependence of the average energy.

Fig. 1. Velocity (a), energy (b) and effective mass (c) as func-
tions of the applied electric field at 77 K for Hg0.8Cd0.2Te with
n = 1014 cm−3. Solid lines (HD) refer to analytical expressions
and symbols (MC) to Monte Carlo results.

3 Results and discussions

We have reported in Figure 1 the drift velocity (a), mean
energy (b) and effective mass (c) as functions of the ap-
plied electric field for a concentration n = 1014 cm−3

at 77 K. The continuous lines refer to relations (9)–(11)
whose constants and parameters are given in Table 1, and
the symbols refer to Monte Carlo simulations [10]. The
drift velocity increases linearly with the electric field up
to around 50 V/cm. For higher electric fields, the drift ve-
locity tends to a saturation value around 4.5 × 105 m/s.
Indeed, in the range of high electric fields, the transport
is dominated by collisions with polar optical phonons. As
concerns the energy, it increases monotonously with the
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Table 1. Parameters used to express the velocity, mean energy and effective mass analytically for Hg0.8Cd0.2Te with n =
1014 cm−3 at 77 K.

vs β γ Ec a b c

(107 cm/s) (V/cm) 10−42 Kg m2 V2 10−38 Kg m2 V2 10−32 Kg

5.9 2.20 0.35 148 2.72 9.231 0.953

Fig. 2. Velocity (a) and energy (b) relaxation times as func-
tions of the applied electric field at 77 K for Hg0.8Cd0.2Te with
n = 1014 cm−3. Solid lines (HD) refer to analytical expressions
and symbols (MC) to Monte Carlo results.

electric field. We remark that non-ohmic regime is reached
for relatively weak electric fields, that is of about 50 V/cm.
The high non-parabolicity coefficient of the conduction
band (11 eV−1) leads to a small effective mass at low fields
of about 0.01 m0, where m0 is the free electron mass. On
the other hand, the effective mass increases with the elec-
tric field of a factor 0.4 between 0 and 500 V/cm. We
remark that the analytical formulas allow a quite accu-
rate description of the behavior of the physical quantities
calculated with the Monte Carlo simulator.

Figure 2 reports the relaxation time of velocity τν (a)
and energy τε (b). As concerns τν , it decreases as a func-
tion of the electric field, from 2 to 0.8 ps at 500 V/cm.
This behavior results from the increased efficiency of the
scattering processes with the electric field. In contrast, τε

Fig. 3. Mean velocity (a) and energy (b) as functions of time
for the reported values of the step-like electric field at 77 K for
Hg0.8Cd0.2Te with n = 1014 cm−3. Solid lines (HD) refer to
hydrodynamic calculations and symbols (MC) to Monte Carlo
results.

decreases from 1.1 to 0.8 ps at 250 V/cm and then in-
creases up to 0.9 ps at 500 V/cm. Moreover, we observe
that the variation of τε is smaller than that of τν within the
considered electric field range. Again, the analytical model
reproduces accurately the Monte Carlo results. The dis-
crepancy observed in Figure 2b in the region of very low
fields is attributed to the uncertainty in the determination
of τε, since both the numerator and the denominator in
equation (8) tends to zero when approaching thermody-
namic equilibrium.

To complete our investigation, we have calculated the
transient regimes of velocity and energy by applying to the
system initially at thermodynamic equilibrium a constant
step-like electric field. The results are shown in Figure 3
for different values of the electric field. For electric fields
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higher than 150 V/cm, the drift velocity exhibits an over-
shoot higher than the steady-state value. A small over-
shoot is also detected for the transient energy from fields
higher than 250 V/cm. This effect can be attributed to the
difference in the velocity and energy relaxation times [9].
Finally we remark that the strong optical phonon scat-
tering in HgCdTe causes the drift velocity and the mean
energy to reach their steady-state values in less than 1 ps.

4 Conclusion

Non-equilibrium transport in bulk n-type HgCdTe
semiconductor has been successfully modeled using a
hydrodynamic semi-classical approach derived from the
Boltzmann equation. Using this approach we have calcu-
lated the velocity and energy field-dependent relaxation
times and modeled the transient behaviors of the aver-
age velocity and energy. In all cases, hydrodynamic re-
sults have been validated by comparison with calculations
performed using the Monte Carlo method.
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Azäıs, to be published


	Introduction
	Hydrodynamic model
	Results and discussions
	Conclusion
	References

